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Alwtract--A one-dimensional mechanistic model is developed to calculate the critical mass flux of an 
initially two-phase, saturated or subcooled fluid. A new formulation is incorporated to account for bubble 
formation, growth and convection. The model allows for thermal non-equih'brium vapor drift velocity and 
non-uniform bubble distribution. 

The model has been qualified in comparison with available critical flow data for water in horizontal and 
vertical discharge pipes and converging-diverging nozzles. Predictions compare favorably with experimen- 
tal data over a wide range of pressures and pipe diameters and lengths. 

1. INTRODUCTION 
Two-phase flow of vapor and superheated liquid exists during blowdown of a two-phase 
vapor-liquid mixture or of an initially saturated or subcooled liquid. An understanding of the 
physics governing the two-phase flow of one-component superheated liquids is useful in the 
design of boilers, refrigeration and desalinization equipments and in the handling of liquified 
gases. Much of the progress in modeling superheated flows has been derived from the need to 
predict critical flow rates in the blowdown safety analysis of water cooled nuclear reactors. 

The flow of a superheated liquid is basically a metastable process. Studies of superheated 
flashing flows are, therefore, directed towards the determination of the vapor generation rate as 
the system relaxes from its excited or thermodynamic non-equilibrium state to equilibrium. This 
relaxation is typically carried out by heat diffusion and evaporation processes. 

Over the past two decades there have been many theoretical and experimental studies of 
non-equilibrium flashing flow. The main aspects of the problem related to critical flow are 
discussed in several review articles by Boure (1977), Jones & Saha (1977), Ardron & Furness 
(1976) and Wallis (1980). A comprehensive review and discussion of analytical models and key 
experimental results in the area of two-phase critical flow has been compiled by Abdollahian et 

al. (1980, 1982), with about 250 references cited. It has generally been found that phase 
equilibrium blowdown models are not valid for discharge from short pipes or nozzles. For such 
geometries the two-phase expansion is too rapid for the two phases to reach equilibrium. 
Temperature and pressure measurements indicated substantial liquid superheat during blow- 
down from short nozzles. Furthermore, the vapor and liquid phases typically attain different 
velocities. These observations call for the development of a non-homogeneous and non- 
equilibrium model to predict the experimental data. 

Non-equilibrium models are generally divided into empirical methods (Henry et al. 1970; 
Henry 1980; Simpson & Silver 1962) and mechanistic models (Edwards 1968; Winters & Merte 
1979; Malnes 1975; Ardron 1978). The first approach accounts for non-equilibrium vapor 
generation by introducing one or more empirical coefficients to keep the flow quality below its 
equilibrium value. The coefficients are typically fitted to experimental data with no attempt to 
describe the mechanism of vapor formation. In the second approach, the problem is formulated 
from a mechanistic point o f  view. The vapor generation is generally modeled as a bubble 
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growth process following Plesset & Zwick (1954) or Forster & Zuber (1954). It is assumed that 
the rate of growth is governed by transient conduction in the liquid surrounding each bubble 
with no effects from neighboring bubbles. 

Incorporating a bubble growth model in the analysis of superheated liquid flow requires 
simultaneous solution of the fluid field equations in conjunction with constitutive relations to 
account for bubble convection, growth and interfacial energy transfer. Various approximations 
are typically made to simplify these equations. Winters & Metre (1979) used a lumped 
parameter approach and neglected the effect of relative velocity and bubble convection. Ardron 
(1978) approximated the spatial variation of the temperature difference across the bubble 
surface by an arbitrary linear function and thus omitted the energy conservation equation. The 
one-dimensional two-fluid equations for the conservation of mass and momentum were then 
solved numerically to predict the critical flow data assuming the liquid temperature is constant. 
While it is demonstrated that the above models are successful in predicting critical flow data for 
initially subcooled or saturated conditions, the effect of the various approximations made in 
deriving the vapor phase equation on the predicted critical mass flux is not fully elaborated. 

This paper develops a mechanistic model for non-equilibrium critical flow of an initially 
two-phase, saturated or subcooled liquid. The model is based on a one-dimensionai drift flux 
formulation of the mass, momentum and energy field equations of  the two-phase mixture and 
incorporates a new formulation of the vapor phase equation. It allows for interphase liquid- 
vapor relative motion, thermal non-equilibrium wall heat flux and radial non-uniform dis- 
tribution of bubbles. Predictions of the new model are compared with available data for steady 
critical flow in nozzles, pipes and converging-diverging test sections. The effect of the pipe 
length and reservoir stagnation conditions on the critical flow rate is analyzed. The predicted 
critical mass flux for long flow channels are typically lower than the homogeneous equilibrium 
prediction due to wall friction. Predictions for short discharge pipes are shown to be affected by 
thermal non-equilibrium in the flow and lie above the predictions which are based on the 
homogeneous equilibrium approximation. 

2. CONSERVATION EQUATION 

Basically we establish a four-equation model: three mixture balance equations and one phase 
mass balance. This set is closed if two restrictions are imposed. We assume: (1) vapor is at 
saturation temperature corresponding to the imposed liquid pressure and (2) a drift velocity is 
given as a function of physical properties. The remaining dependent variables are the vapor 
void fraction, pressure, liquid enthalpy and mixture mass flux. 

2.1 Mixture equations 
The mixture conservation equations used are based on the one dimensional drift flux model 

(Lahey & Moody 1977; Dobran 1981). For steady-state conditions the two-phase mixture mass 
equation is: 

d(GA)  O. t t] 

The steady-state momentum equation is given by: 

dP 
~ - ~ - - ~ 1  i~ D +13gCOSO " e ~ Z Z ~ l _ -  ~ 15 dz 

where PL, PG and/~ denote respectively the liquid, vapor and mixture density, a is the vapor 
volumetric concentration, G is the mixture mass flux, Vtj is the drift velocity of the vapor 
phase with respect to the center of volume, f is a friction coefficient, D and A are the local duct 
hydraulic diameter and flow area and O' is the duct inclination angle. P is the pressure at 
position z, g is the acceleration due to gravity and the subscript loc. denotes local property. 
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Equation [2] is written in Eulerian form in terms of the center-of-mass of the two phase 
mixture and incorporates the conventional simplifying assumptions that some of the averages 
of products of dependent variable across the duct are identical to products of averages. 
Momentum transfer due to turbulence is neglected. The last term on the left hand side of [2] is 
due to the relative velocity between the phases. It represents the net momentum flux with 
respect to the center of mass of the flowing two phase mixture. Local irreversible pressure loss 
associated with an abrupt area change is accounted for in the last term on the r.h.s, of [2]. 

The steady-state mixture energy equation for non-equilibrium two-phase flow is: 

G_j.~.r_~.~z~etadH,1 d [ _  PGPLp V~#hLG)={_~+_~(pL_pG)aVGj}dP 1 ' dz q"PHA . [31 

Here H is the specific enthalpy of the two-phase mixture and hLG is the latent heat. In [3] we 
have neglected the effects of frictional heating and change of kinetic energy due to the relative 
velocity between vapor and liquid. Equation [3] is written for non-homogeneous flow and 
allows for heat flux q" from a heated boundary surface of perimeter PH. The second term on the 
l.h.s, of [3] represents the drift of energy through the center of mass plane of the two phase 
mixture. 

2.2 Vapor phase equation 
Assuming that the vapor density is uniform over the flow cross-section, the steady state 

equation of conservation of mass of the vapor phase is: 

d (AuGapG) = rG [4] 

where uG is the vapor phase velocity averaged over the phase volume and rG is the mass of 
liquid evaporated per unit time and length of the flow path. The magnitude of this evaporation 
term depends on the transient and thermodynamic conditions in the flow, which are in turn a 
function of position z. 

3. C O N S T I T U T I V E  AND STATE R E L A T I O N S  

Equations[l]-[4] form a complete set of field equations. To close the model requires a set of 
constitutive and state relations to describe the fluid mixture properties and the exchange of 
momentum and energy between the fluid mixture and the bounding surfaces. This section 
describes the relations for the wall friction coefficient, f, local irreversible pressure drop APIo~., 
drift velocity V~, wall heat flux and thermodynamic and transport properties of vapor and 
liquid. A relation for the vapor formation rate re, is developed separately in the following 
section. 

3.1 Pressure drop and heat flux 
For turbulent flow, which is the condition most usually of interest here, a suitable empirical 

relation for f is (Streeter 1961): 

-L-1 = 3.48 + 4 log(D/9 x 10-5). [5] 
v? 

The general local irreversible pressure drop equation is similar to that for friction pressure 
drop: 

G 2 
AP~. = K ~ [6] 
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where the single phase form loss coefficient, K is determined from handbooks of hydraulic 
resistances, (e•g. Streeter 1961). 

Since no data is currently available on the effect of wall heat flux on the critical two-phase 
flow, the wall heat flux term in [3] was set equal to zero. 

3.2 Drift velocity 
The vapor drift velocity is expressed in terms of the void-weighted average velocity of the 

vapor phase (Lahey & Moody 1977): 

~LL( G)  OVoj + (Co-  1)G 
V~i = UG - P = ~5 - (Co - 1)(pL -- pG)a (7) 

where Co is a concentration parameter which quantifies the effect of the radial distribution of 
void and Voj is the void weighted vapor drift velocity with respect to the center of volume of 
the two-phase mixture. 

For flow in a horizontal pipe Vtj was set equal to zero. For vertical flow the drift velocity 
was calculated by (Lahey & Moody 1977): 

Voj =1  41[ °g(pL ~ PG)| 1/4 ~ • L PL -J COS O' [8 ]  

where or is surface tension and cos 0 '=  1 for liquid upflow and cos 0'= -1  for liquid downflow. 
Equation [8] is strictly applicable for equilibrium bubbly flow. This equation is used here since 
no better expression is currently available for non-equilibrium situations. 

3.3 State equations 
The state equation for steam and water was obtained from analytical fits to steam table data 

and are accurate to within a few percentage points for the pressure and temperature ranges of 
interest• To simplify the computtttion procedure it was assumed that the vapor is an ideal gas 
which obeys the saturated vapor pressure law obtained by the Clausius-Clapeyron equation: 

dpo_  p~ 1 
dP - P hL~ [9] 

4. EVAPORATION RATE 

To determine the evaporation rate term Fo we consider the growth in the superheated liquid 
of vapor bubbles of radius r. The determination of r requires the simultaneous solution of the 
equations for the vapor pressure in the bubble, the time dependent thermal conduction in the 
liquid layer surrounding the bubble and the dynamics of the bubble. A number of approximate 
solutions available in the literature greatly simplify the analysis. Since in the following the 
bubble population is averaged over the flow cross section, the influence of the wall on the 
bubble radius history is ignored. In addition, convection heat transfer is insignificant for small 
bubble size and low relative velocity. The bubble radius is, therefore, determined by a 
conduction bubble growth model (Forster & Zuber 1954). 

/%/(~.pCp)L~(T 
~l T f  

[lO] 

Here TL is the temperature of the liquid surrounding the bubble and Ts is the vapor temperature 
taken to be at saturation, ?, and Cp are the liquid conductivity and specific heat respectively. In 
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a steady temperature and pressure field [10] can be restated as: 

dr  ~ 2 ~  2 f l=k V2OteC~)L [11] 
= ' h ~ G  " 

The principal assumption is now made that the rate law [11] is valid also in an element of the 
vapor phase which travel with the speed of the vapor. Equation [11] can be stated in the 
Lagrangian view as 

Dr T,) 2 -~= [32(TL r [12] 

where Dr/Dr is a substantial derivative. 
In order to arrive at a constitutive relation for the vapor rate of formation, a concentration 

N is defined as the number of bubbles of radius r lying between r and r + dr, per unit volume of 
fluid and vapor mixture, per unit radius difference dr. The number of bubbles whose radii lie 
between r to r + dr is therefore N dr, per unit volume of fluid and vapor mixture. In a short 
time interval dt a bubble which did lie inside the range r -  dr to r -  dr + (Dr/Dr) dt will pass into 

the range r to r+dr. Similarly, a bubble which was located inside the range r to r +  
[(Dr/D0 + d(Dr/D0] dt will leave the range r + dr. The reason for including the term d(Dr/Dt) is 
that Dr/Dr is a function of r as seen by [12] and DrIDt is considered in neighboring r intervals. 

Hence, the increase in the number of bubbles in the range dr and time dt is in view of these 
considerations, and the definition of N, 

-dN Dr 

which is correct to first order of the differential terms. Hence, on division by dt and dr and 
combining the terms on the r.h.s: 

ON O Dr 
[131 

(ONIOt)~,ow~ represents the bubble concentration growth rate of bubbles of radius r lying 
between r and r + dr per unit volume of fluid and vapor mixture, per unit radius difference dr. 

Under steady-state conditions the rate of change of bubble density due to growth is balanced by 
convection, yielding 

(~t)growth 1 0 "N =~(Auo). [14] 

In this balance one observed that (ONIOt)s,o,~ is the growth rate per unit length in the flow 
direction. From [12] to [14] one obtains 

~2 O FN ] ON N O (Auo) 
~ [ r  ( rL-  T,) ~ + uo 7 7  = - ~ -  az [15] 

Defining, (Mr) = n, ll2(rl[JT~) 2 = r and [1 - (TL(z)IT,(z))] 2 = 4,(z), [151 becomes 

an n a 
4,(z) + uo Oz A - -  = ~ ~-~ (Auo) .  [16] 

Equation [16] is a new bubble species equation. Its solution describes the bubble number and 
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their radii distribution n(z, ~) along the flow channel. The function ~(z) describes the tem- 
perature field of the liquid-vapor mixture. It is directly related to the system pressure and liquid 
specific enthalpy. Therefore, a solution scheme should be considered in which [16] is solved 
along the flow channel in conjunction with the mixture and phase field equations. Such a 
scheme is described in this and the next sections. 

The vapor generation rate FG is now determined by integrating (ONlOt)~owth over the range 
of bubble radii in the flow 

4 s® ON rG:3ctpC~fo (~-)growth r3dr [17] 

where R® is an arbitrary large bubble radius. Once n has been found from [16] one can 
determine (ONlOt)~wth from [14] for the determination of FG(Z). 

Equations [14] and [17] must be considered together with the vapor phase equation [4]. It is 
[4] which determines the void fraction, a. By multiplying [14] with 4/3wf~,Ar 3 dr and integrating 
with respect to r, one obtains with help of [17] 

4 d R® 
r G = ~ { p ~ A U ~ f o  nr4dr}. [18] 

A comparison with [4] then shows that the void fraction is 

4 Ro 
a = ~ ~r nr 4 dr. [19] 

It should be noted that [10] and [12] were originally derived to predict bubble growth at 
constant pressure. Their use in a variable pressure field along a flow path should therefore be 
considered as an approximation. The approximation is weakest mainly in region of rapidly 
changing pressure, e.g. near an orifice or at the choking plane in case of two phase critical flow. 
However, since the objective of the present calculations is to predict the location of the 
choking plane rather than its detailed structure, [10] and [12] are considered acceptable. Models 
for bubble growth in a variable pressure field (Jones & Zuber 1978; Cha & Henry 1981) can be 
incorporated in the evaporation rate model developed in this paper. This extension is presently 
under investigation. 

4.1 Solution by Laplace transformation 
Equation [16] is a first order nonhomogeneous hyperbolic equation which requires both 

"initial" conditions at ~ = % and boundary conditions at z = 0, taken as the entrance to the flow 
section. In the general case of two-phase stagnation conditions we consider at the entrance to 
the flow channel an input of N bubbles per unit radius difference per unit volume with linearly 
distributed radii in the range r0 to rm, i.e. 

N (r) dr = air dr [20] 

For a given nl, the maximum bubble radius (rl or ~'l) at the entrance can be determined by the 
known stagnation void fraction a(0) (i.e. [19]) and ro 

a(O)= ~ w f, i' nlr4 dr=-~5 ~rnl(rl~- ro5). [211 

A suitable boundary condition for n(0, ~) is therefore given by: 
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n(0, ~-) = ~'nl, 1"o-< Z-< ~ 
10, ~'>~1 

[22] 

Note that for subcooled or saturated entrance conditions [22] is reduced to 

n(0,~)=0, T>%. [23] 

Along the flow channel, foreign bodies and pipe surfaces normally provide ample nuclei for 
vapor formation. The number of vapor nuclei per unit volume of a two phase mixture per unit 
radius difference is resort'bed by: 

n(z, 1"o) = no[1 - a(z)] expl 
I q,~G(z)] 

j [24] 
L 

which is comparable to the expression used for the embryo density in homogeneous nucleation. 
In[24] kb is the Boltzman constant, and no is a constant describing the normalized number 

density of bubble nucleation sites in the liquid per unit radius difference. AG is the maximum free 
energy of bubble formation given by Cole (1979) 

txG(z) = 1--6 ~r~ 3 
3 [P(z ) -P , (TL)]  2 

[25] 

is a factor which depends on the character of the cavities in the surface and the liquid contact 
angle. Typically 0 ~ ~ < 1. 

In [24] we assume that for the computation of n all vapor nuclei are formed with a uniform 
initial radius ro (or ~'o). It is important to note that the actual equilibrium nucleus radius depends 
on the local thermodynamic condition in the flow and in particular on the local liquid superheat. 

The vapor species equation [16] can be written as 

h, . #n #n tz) ~-{ + ~'~ = -rig(z)  [26] 

where 

t = 1" - ~'o, h(z) = ~(z)luo(z)  and g(z) = d~ Lq(Auo) 

In terms of z and t the boundary and initial conditions are 

! -  ¢,tLG(z)\ 
n(z, 0) = n0[1 - a(z)] exp,, kbTL(Z) ) '  Z > 0 

n(O, t) = n d U ( t ) -  U ( t -  tO} [27] 

where tl = ~'1 - ~'0 and U(t) is the unit step function. The Laplace transform of [26] with respect 
to t yields with the imposed initial condition 

In(z,  $) + [h(z)S + g(z)]n(z, S) = h(z)n(z, O) [28] 

where 

n(z, S) = f :  exp(-  SOn(z, t) dr. [29] 
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The general solution to this first order ditterential equation is 

{f0 ) {Io / n(z, S) = C exp - [h(z')S + g(z')] dz' + exp - [Sh(z') + g(z')] dz' . 

• f[exp{fo'th(z'3S+ g(z")ldz"}[h(z ')n(z ' ,O)]dz ' .  [301 

The constant of integration C can be evaluated using the Laplace transform of n(0, t) from [27] 

n l  C = ~ [1 - exp( -  Sh)]. [31] 

Substituting h(z) and g(z) in [30] and performing the integration the general solution reduces to 

m(0) " Sa(z)]+ exp[-(Sz~(Z)]" fo exp[Sa(z')]m(z')[h(z')n(z',O)] dz', z > 0  n(z, S) = C ~ exp t -  

[32] 

where 

and 

f/ a(z) = h(z') dz' [32a] 

re(z) = A(z)uo(z)  [32b] 

The inversion of the first term yields 

re(O) ~Urt n~(z, t) = n? h - ~  , - a (z ) ] -  U[t - (h  + a(z))]}. [331 

This term describes the growth of the vapor bubbles introduced at the entrance as they flow 
along the channel. Equation [33] represents a positive pulse of magnitude nlm(O)lm(z) and of 
duration a(z) < t < (tl + a(z)). Due to the term a(z) this part of the solution accounts for bubble 
growth due to heat conduction and pressure change. 

The inversion of the second term on the right hand side of [32] is conducted formally. 
Assuming that the Laplace inversion integral can be interchanged with respect to the z' integral 
we have 

nz(z, t) = h(z')n(z' ,  0).~-l{exp[- $(a(z)  - a(z'))]} dz' 

where .~-t represents the inverse Laplace transformation operator. Now consider 

~- t{exp[-S(a(z) -a(z ' ) ) ]}  = .~-1{S e x p [ - S ( a ( z ) - a ( z g ) ] }  = d U [ t - ( a ( z ) - a ( z ' ) ) ]  

= ~[t - ( a ( z ) -  a(z'))]. 

Hence by[32a] h(z') dz' = da(z') we obtain 

fo¢z) m(z') 
n2(z, t) = J0 -ff~ n(z', 0)8[t-  (a(z)- a(z'))] da(z'). 

[34] 

[351 

[36] 
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Equation [36] can be written as 

{ ~ n(z',O), O<t  <a(z)  

n2(z, t) = O, t > a(z) [371 

where z', is the point at which the vapor bubble was originated, z' is given by the explicit 
solution of 

a(z') = a(z ) -  t. [38] 

Equations [37] and [38] describe the growth of a vapor nuclei originated at z' as it moves to 
position z. The complete solution of the vapor phase equation in the general case of the two 
phase entrance conditions is then given by: 

n(z, t )  = n,(z,  t )  + n2(z, t). [39] 

Equation [39] is illustrated for certain parameter values in figure 1. The bubble size function, t, 
is plotted vs distance from the entrance of the flow channel for the general case of two-phase 
entrance conditions with To = 0 and P(0) = P0. Bubbles of maximum radius corresponding to t~ 
exist at the entrance. As the bubbles move along the flow channel their radii increase. In 
addition, new bubbles of a radius corresponding to t = 0 are continuously introduced along the 
channel. The solution has therefore two discontinuities as can be seen from [33] and [37]. The 
first, at tl+ a(z), corresponds to the maximum radius the bubbles can attain at a certain 
distance along the channel. At larger radius the bubble number density drops to zero as seen 
from [33]. The second discontinuity, at t -- a(z), represents the boundary between the bubbles 
introduced at the entrance with density n~ and the new bubbles which result from growth of 
vapor nuclei along the channel with density n2. It is interesting to note that in the case of 
subcooled or saturated stagnation conditions no bubbles are introduced at the entrance and 
therefore the group nl does not exist. 

Equation [39] is used to determine the evaporation rate along the fiow channel. From [12], 

~o ~ ! ! i ! . 

n ~ ' ~ t ,  + a(z) 
. . / ~  = nl(z,t) ~ 

--tl f /  a(z) Po " 64 bar 

/ "  D - 12.7mm 
/ to: 0 

n- n21 z ,t) 

ld , I , , 
0 0.1 0.2 0.3 0.4 

= (,,~ 
0.5  

Fig. 1. Variation of bubble size function, t, along a flow path. Curves represent discontinuities between 
different bubble populations. 
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4 foR®(On~r 3 ['~ = -'3 "trpt~AI82(TL- T~)2~ \Or/  dr. [40] 

Equation [40] can be written in terms of r as: 

F~ = - ~rp~A~(z)(/3Ts) 5 (~n~ 3,2 [41] 
\Or /  " 

Since, as shown in figure 1, n = 0 at r = r®, [41] can be integrated by part to yield: 

F ~ =  F(z) nr112 dr [421 

where 

F(z) = ~-~  ~'0c, A4~(z)(~Y,) 5. 

Substituting [39] for n(z, t) in [42] we obtain after some rearrangements: 

le~ m(z)t2 .,o n(z', ro)m(z')r 1t2 dr + nlm(0)[(rl + a(z)) 3t2- (to + a(z)) 3t2] • [43] 

Considering the functional relation between • and z' [38], the integral in [43] can be written in 
terms of z' as 

F(z) ~3_ ~o n(z', ro)m(z')[ro + a(z)-  a(z')]l12h(z') dz' 
to(z) = re(z) [2 Jz 

+ nlm(0)[(Ti + a(z)) m -  (ro + a(z))m]} 

Once the pressure and liquid temperature are calculated for z' < z one can determine n(z', To) 
from[27], a(z') and m(z') from[32a] and [32b] and perform the integration in[44] to obtain the 
vapor generation rate at z, Fo(z). This, in turn, can be substituted into the macroscopic vapor 
equation[4] to yield, with help of[I]-[3], the pressure and liquid temperature at z. 

For subcooled flow the integrand in [44] is zero for the subcooled portion of the expansion 
for which TL < T~, The integral term in [44] accounts for the formation and growth of bubbles 
along the flow path. To apply [44] requires suitable specification of no, nl, 0 and To in [27]. In 
the absence of direct measurements of these parameters the assumption is made that no = nl 
and  To = 0. This leaves two adjustable parameters in the model, no and 0 which entered the 

analysis through [24]. 
It should be noted that since un depends on a (and therefore on n), [16] and [26] are 

non-linear partial differential equations. To apply the solution scheme outlined above, an 
iterative technique had to be used to linearize [26]. uo was taken initially as a constant and then 
updated by the solution n(z, t) from the previous iteration. Typically convergence to within 

0.1% is obtained after two iterations. 

5. NUMERICAL CALCULATIONS 

The field equations were combined by substituting the conservation of mass equation [1] 
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into [2]-[4]. The resulting set of equations can be represented in the matrix form 

By = b [45] 

where y is a three component vector 

yT (da dP dhL~ 

and B and b are a 3 x 3 matrix and three component column vector respectively, described in 
Appendix A. 

A fully explicit finite difference scheme has been formulated to solve [45] which yields the 
pressure, void fraction and liquid enthalpy (or temperature) in the channel. The vapor 
generation rate FG(z) was updated at each mesh point using [44]. 

5.1 Entrance geometry 
Equation [45], describes a one-dimensional flow field in a duct of arbitrary geometry. A 

detailed description of the actual ducts and entrance nozzles geometries were utilized to 
integrate the field equations along the flow path starting from the input stagnation conditions. In 
a constant area section the flow field is straight forwardly represented if we take dAJdz = 0. The 
initial values of P, hL and tz are taken as the stagnation values. 

6. R E S U L T S  AND D I S C U S S I O N  

The theoretical model was qualified in comparison with available high pressure data on 
adiabatic critical flow of water at subcooled, saturated or two-phase entry conditions. The 
phase distribution parameter Co was arbitrarily set to 1.1 in all computations. This value of Co 
as well as the model used for VGi (see [8]) were recommended for equilibrium flow situations 
(Lahey & Moody 1977). HoWever, since the effect of Co on the predictions is generally small 
this deficiency is considered acceptable. 

The predicted critical mass flux depends largely on the degree of thermal non-equilibrium in 
the system which, in turn, is affected by the number density of nucleation sites and bubbles in 
the mixture. Edwards (1968) recommended bubble densities in the range of 22 x 10 lm to 2 × I0 ~4 
per m 3. If, in addition, the initial bubble radius and radius difference are assumed as 10 -5 m the 
recommended range of initial normalized bubble number density per unit radius and radius 
difference becomes 2x 102~ to 2x 10urn -5, respectively.$ In this work the value of no = nm = 
7.5 x 1023 m -5 was found to fit the data best. 

The surface parameter, 0, depends on many parameters such as pipe surface condition, 
water purity, pipe surface area to fluid volume, etc. No physical model is currently available to 
compute this parameter but an estimate can be made from Alamgir & Lienhard's (1981) paper. 
The surface parameter was taken in this work as O = 10-s which fits [11] in Alamgir & Lienhard 
(1981) at its lower bound. Figure 2 gives an indication on the sensitivity of the predicted 
pressure along a pipe to variations in no and the surface parameter 0. Illustrative calculations 
are presented for flow of an initially saturated water in 6.35 mm diameter pipe at stagnation 
pressure of 67 bar. It has been shown that the results are relatively insensitive to the value of 0 
in the range of < 10 -s. In addition, it is interesting to note that in case of two-phase entry 
conditions, the rate of vapor generation is dominated by the growth of the relatively large 
bubbles (nl) which exist initially at the entrance and the contribution of the new bubbles (no) is 
generally small. 

To predict the critical mass-flux as a function of pipe length, an exit mass flux was 
postulated. The changing flow conditions were then tracked along the pipe starting from the 

~'We are grateful to the reviewer for suggesting this range of bubble density. 
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stagnation point at z = 0. At some distance along the pipe the pressure gradient becomes 
arbitrarily large (dPIdz > 50bar/mm). This point was identified as the choking plane. By 
repeating the calculations for other mass flow rates one obtains a set of solution points which 
describes the critical mass flux as a function of pipe length, L. 

Critical flow tests were conducted by Sozzi & Sutherland (1975) with saturated, subcooled 
and boiling water. The effect of initial fluid enthalpy, entrance geometry and flow length was 
studied. Tests were carried out by blowing down vessels from an initial pressure in the range of 
55-75 bar. In figure 3 the present model is compared with data for subcooled and two phase 
entry conditions. The entrance geometry of nozzle No. 2 in Sozzi & Sutherland (1975) 
experiments was approximated by a smooth elliptic contour which leads from the vessel into a 
straight 12.7 mm diameter pipe. The stagnation quality, Xo, indicated in figure 3 is defined by the 
measured stagnation density~ Critical mass fluxes based on a homogeneous equilibrium com- 
putations are also indicated in figure 3. 

Predictions of the present model are generally shown to be in good agreement with the data. 
However, critical flow rates in short pipes (LID < 2) are under predicted by 5-10%. This is 
probably due to the assumption of constant bubble nucleus radius and neglecting the process of 
bubble nucleation delay at the entrance to the discharge nozzle. Nucleation delay time of about 
1 ms has been observed in a number of depressurization tests with water. For subcooled entry 
conditions a delay of 0.5 ms in bubble generation can shift the choking plane by about 4 cm 
which is more than three pipe diameters. It should be noted, however, that for two-phase initial 
conditions, the bubbles at the entrance to the discharge nozzle provide a sufficient number of 
sites for bulk nucleation that the delay phenomenon is not as pronounced as for subcooled or 
saturated entry conditions. Very good agreement with the data is therefore obtained for 

two-phase stagnation conditions with LID > 1. 
Fauske (1965) measured the critical flow of initially saturated water in a 6.35 mm diameter 

pipe over a wide range of stagnation pressure 5 < P0 < 150 bar. Horizontal discharge pipes with 
sharp entrance geometry were used. Test results are compared with model predictions in figure 
4. Agreement is shown to be good for long pipes. Critical mass flux is however underpredicted 
in short pipes (LiD < 6). This is probably a result of the inherent limitations of the one dimen- 
sional model when appfied to describe the physical phenomena in a sharp edged entrance 
geometry. The predicted rate of bubble growth and formation is sensitive to the pressure 
conditions and liquid superheat. Therefore, neglecting radial forces in the entrance leads to an 
erroneous answer due to inaccurate pressure drop prediction. Also, previous investigations (e.g. 
Edwards 1968) have suggested that an annular flow pattern may exist downstream of a sharp-edged 
entrance in which a vapor film surrounds a low void fraction two-phase jet. Obviously the bubble 
growth model does not accurately describe the degree of thermal non-equilibrium in such 
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separated flow configurations. Increased critical velocity may result from a decreased heat transfer 
area in annular flow compared to bubbly flow. The entrance effects apparently become small far 
from the entrance which explains the good agreement between the measured and predicted data for 
L/D >6.  

To investigate the predictive capability of the model for large scale experiments, cal- 
culations were performed for a set of biowdown tests of an experimental program made at the 
Marviken Power Station in Sweden (Abdollahian et al. 1982). The discharge nozzle considered 
for these predictions had a rounded entrance followed by nominally 500 mm constant diameter 
test section from 166 to 1809 mm in length. Since the upstream conditions changed very slowly 
during the 50-80 s blowdown, relative to the rapid (100 ms) adjustment of the flow in the test 
section, the data was treated in a quasi-steady manner, i.e. constant stagnation conditions were 
assumed. Calculated results are compared with observed mass flow rate for initially subcooled 

M F  Vol .  10, N o .  I - - C  
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conditions in figure 5. The predicted results agree with the measured flow rate to within the 
specified measurement accuracy. The experimental data is slightly underpredicted for the short 
test section. As discussed before, this may be due to bubble nucleation delay. 

Data from the Marviken test for initially saturated conditions are compared in figure 6. Good 
agreement is achieved over "the whole range of length. The error bars in figure 6 are those 
quoted in the experiment. 

Flashing water flows in a converging/diverging nozzle were investigated by Abuaf et al. 

(1980). The test section consisted of a symmetrical converging/diverging portion 559 mm long 
with inside diameter of 51 at the inlet and exit and 25 mm at the throat. Critical flows were 
measured for inlet water temperature of 99.5°C and inlet pressures in the range of 1-10 bar. 
Figure 7 compares the predicted and measured inlet critical mass flux as a function of the inlet 
pressure. The critical inlet mass flux was set so as to induce a choking flow at the nozzle throat. 
In all cases analyzed inception of flashing (Ts < TL) is also predicted very close to the nozzle 
throat. These predictions are qualitatively in agreement with the experimental observations. 
The predicted maximum inlet mass fluxes are also in agreement with the measured data. At the 
low inlet pressure range the model underpredicts the measured mass flux by 5-10%. 

The model was used to compute various parameters of importance for the prediction of 
two-phase critical flow. For instance, figure 8 shows typical profiles of the vapor and mean 
velocities and the mixture density along a 6.35 mm diameter horizontal pipe with reservoir 
pressure of 64 bar. The small vapor drift velocity indicated in figure 8 results from the assumed 
non-uniform vapor distribution (Co = 1.1). 

Vapor void fraction and velocity ratio profiles for the same run are shown in figure 9. For 
hodzontad pipe with local drift velocity Voj = 0 the velocity ratio is: 

S = u_.fi~ = Co 
re 

UL 1-~(Co-1) 
[,47] 

In figure 9 velocity ratio is 1.175 at a location of one diameter upstream of the choking plane. 
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These relatively small predictions of the interphase relative motion is in general agreement with 
other theoretical and experimental observations (e.g. Henry et al. 1970; Edwards 1968). 

Typical profiles of liquid temperature and superheat along the flow channel are shown in 
figure 10, for Fauske's experimental set-up at stagnation pressure of 86 bar. Liquid temperature 
is shown to drop by more than 10°K before choking. It should be noted that the liquid 
temperature is sometimes taken as constant to simplify the analysis (e.g. Ardron 1978). Such an 
approximation while eliminating the need to solve the energy equation, may lead to erroneous 
results and overestimation of vapor generation rate. The rate of liquid cooling increases near 
the choking plane due to rapid depressurization. 

Figure 11 shows typical results of rcJA along a 6.35 mm diameter pipe for two mass fluxes 
and reservoir pressure of 64 bar. The vapor generation rate increases sharply near the choking 
plant. Fo is a function of the stagnation pressure and mass flux. 
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7. CONCLUSIONS 

A one-dimensional, non-equilibrium mechanistic model has been developed to calculate the 
critical mass flux of an initially two phase, saturated or subcooled liquid discharging from a 
reservoir. The model is based on the concept of bubble growth being controlled by heat 
conduction through the surrounding superheated liquid. An approach has been taken to 
describe the number and size of the vapor bubbles along the flow path which, in turn, 
determines the linear rate of vaporization. Good agreement with the data over a wide range of 
stagnation pressures and geometries was obtained by choosing two parameters which describe 
the initial normalized bubble density and the heterogeneity factor. For all calculations, the 
empirical constants of the model were unchanged. It is shown that the theory can describe 
steady state choking phenomena and departure from thermal and mechanical equilibrium. 

Limitation of the present theory arises from a single phase entry conditions when applied to 
very short pipes and high mass fluxes. In these cases the neglect of bubble nucleation delay and 
flow separation caused a noticeable systematic under prediction of the critical flow rate of 
subcooled and saturated data. The effect of bubble delay is not pronounced when two-phase 
entry conditions are analyzed. Mechanistic models for bubble delay, variable nucleus radius 
and flow separation at the entrance are required for further refinement of the model. 

Critical two-phase flow is shown to be a strong function of the size and configuration of the 
discharge pipe or nozzle. Discharge flow in pipes of up to twenty diameters in length are 
significantly higher than predicted by a homogeneous thermal equilibrium model. Predictions 
for long pipes (L/D > 20) are affected by flow friction and lie below the predictions based on 
homogeneous frictionless flow. 
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APPENDIX A 

To combine the field equations into a matrix form, it is convenient to use the following 

identities: 

# = ctpo + (I - a)pL 

pH : apo + (I - ct)pLhL. 

[AI] 

[A2] 

It is further assumed that VG~, hG and PL are sectionally constant and are uniform over the 
cross-section. With these assumption and using [9] the components of the square matrix B and 
column vector b in [45] are" 

where 

[B~l B~2 0 1 
|B21 B22 B23 

B = LB,, B32 0 

s 2 ~  _~ (aL- ~)~ 
B . = ~  P 

PLPG , ,  B2~ = ~ ~ + s) + 'Y(m- Po) 

B~ = h - ~  [(1 - ")PL -- S°p~I 

B3! - - - -  PLPG_ Euo 
P 

B,2 = P-~ E( l - aCo)aUo ~p 

1 
E =  

Co-(Co- 1)P-~ L 
P 

E2(C°- I) ( C o + P ~ )  y = apGpt. ~3 

1 [ I + a ? ( p L - / ~ ) ]  
X= hL~P 

t 

s = pLVo~ 
G 

aposr .~] ~=I ~ "s pL(1 -- a ) L  -- 2sECo- 2E(Co- 1) . 

[A3] 
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The vector b is 

b = 
Ibl b2 

b3 

edA 2f gp2cosO, t~/dP'~ 
b'=A dz O O 2 -G-~-d-~,],o~ 

b2 = q"Pu apGPL VGjE d_.AA 
GAhLG AG~ dz 

b3=ro 1[ E ]dA 
--~- -~ auGp~ - = c~GCopG d - i  P 

,~ [Voj Co-l] 
e = l - s E p G  ~ -  a l_ G - "~ " 

For homogeneous flow [A3] and [A4] are simplified by using 

E = C 0 = ~ = I  

~--v-- v~j=o 

G 
U G ~ "-~- . 

P 

The resulting matrix and vector for homogeneous flow are 

B = 

PL-- PO 

UGpopL 

a dpG 
~dP 0 

1 ct(l -- Ot)p L dpG (I,- a)pL 
hm~ ~z dP hLo~ 

a(l -- a) UGpL dpo 0 
dP 

[A4] 

and 

b = 

1 dA 
A dz 
q"Pu 

GAhLG 
Fo 
A 

2f g~2cos0, /5 [dP 
D ~ - G-~ ~d-~ } ,o 


